- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cheng, Hai (2)
-
Cruz, Francisco W. (2)
-
Edwards, R. Lawrence (2)
-
Feinberg, Joshua M. (2)
-
Jaqueto, Plinio (2)
-
Novello, Valdir F. (2)
-
Terra-Nova, Filipe (2)
-
Trindade, Ricardo I. (2)
-
Azevedo, Vitor (1)
-
Brandt, Daniele (1)
-
Hartmann, Gelvam A. (1)
-
Karmann, Ivo (1)
-
Schroedl, Peter (1)
-
Strauss, Beck E. (1)
-
Strauss, Becky E. (1)
-
Stríkis, Nicolás M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Speleothems can provide high-quality continuous records of the direction and relative paleointensity of the geomagnetic field, combining high precision dating (with U-Th method) and rapid lock-in of their detrital magnetic particles during calcite precipitation. Paleomagnetic results for a mid-to-late Holocene stalagmite from Dona Benedita Cave in central Brazil encompass ~1900 years (3410 BP to 5310 BP, constrained by 12 U-Th ages) of paleomagnetic record from 58 samples (resolution of ~33 years). This dataset reveals angular variations of less than 0.06° yr −1 and a relatively steady paleointensity record (after calibration with geomagnetic field model) contrasting with the fast variations observed in younger speleothems from the same region under influence of the South Atlantic Anomaly. These results point to a quiescent period of the geomagnetic field during the mid-to-late Holocene in the area now comprised by the South Atlantic Anomaly, suggesting an intermittent or an absent behavior at the multi-millennial timescale.more » « less
-
Trindade, Ricardo I.; Jaqueto, Plinio; Terra-Nova, Filipe; Brandt, Daniele; Hartmann, Gelvam A.; Feinberg, Joshua M.; Strauss, Becky E.; Novello, Valdir F.; Cruz, Francisco W.; Karmann, Ivo; et al (, Proceedings of the National Academy of Sciences)The diminishing strength of the Earth’s magnetic dipole over recent millennia is accompanied by the increasing prominence of the geomagnetic South Atlantic Anomaly (SAA), which spreads over the South Atlantic Ocean and South America. The longevity of this feature at millennial timescales is elusive because of the scarcity of continuous geomagnetic data for the region. Here, we report a unique geomagnetic record for the last ∼1500 y that combines the data of two well-dated stalagmites from Pau d’Alho cave, located close to the present-day minimum of the anomaly in central South America. Magnetic directions and relative paleointensity data for both stalagmites are generally consistent and agree with historical data from the last 500 y. Before 1500 CE, the data adhere to the geomagnetic model ARCH3K.1, which is derived solely from archeomagnetic data. Our observations indicate rapid directional variations (>0.1°/y) from approximately 860 to 960 CE and approximately 1450 to 1750 CE. A similar pattern of rapid directional variation observed from South Africa precedes the South American record by 224 ± 50 y. These results confirm that fast geomagnetic field variations linked to the SAA are a recurrent feature in the region. We develop synthetic models of reversed magnetic flux patches at the core–mantle boundary and calculate their expression at the Earth’s surface. The models that qualitatively resemble the observational data involve westward (and southward) migration of midlatitude patches, combined with their expansion and intensification.more » « less
An official website of the United States government
